核心产品
联系我们
沈阳盛鑫源建材有限公司
地址:沈阳市于洪区沙岭工业园樟岭路西首
销售部:024-89372166
工程部:13898809528
技术部:13889273861
企划部:13940355907
物流部:024-89372166
聚羧酸减水剂与水泥混凝土适应性问题综述
发布时间:
2023-01-04 16:13
聚羧酸减水剂与水泥混凝土适应性问题综述
与传统的萘系等高效减水剂相比,聚羧酸减水剂因其低掺量、高减水、良好的保坍能力等优点,已然成为目前混凝土改性应用中不可缺少的外加剂之一。但同样存在与水泥适应性问题,具体表现在:混凝土流动性差;坍落度达不到设计要求;出现假凝、速凝;严重泌水及其扒底等现象,对混凝土力学性能、耐久性及施工性能产生了不利影响。
因此,本文从水泥混凝土的原材料及其减水剂的掺加方式出发,简单分析了聚羧酸减水剂在混凝土中应用性不良问题的影响因素,为扩大聚羧酸减水剂的应用提供一定的参考。
水泥特性对聚羧酸减水剂与水泥适应性的影响
水泥孰料矿物组成
聚羧酸减水剂在水泥混凝土中的作用效果主要取决于其对水泥颗粒的分散,其分散作用主要通过吸附来实现。研究表明,水泥孰料不同的矿物成分对聚羧酸减水剂分子的吸附性大不相同。张新民[1]、肖煜[2]等人通过TOC试验发现,C3A含量变化对聚羧酸减水剂的分散性影响程度远大于C4AF,随着C3A含量增加,同掺量聚羧酸减水剂在水泥混凝土中分散性变差;C3S和C2S占孰料矿物孰料比例大,但对聚羧酸减水剂的吸附量较C3A的小。张旭[3]等人研究认为,当C3A含量低于8.0%时,聚羧酸减水剂的适应性不再随着C3A含量的降低而改善。
水泥细度
国内外众多学者普遍认为,水泥细度会影响聚羧酸减水剂与水泥适应性。水泥细度越细,总比表面积越大,C3A水化反应速率加快,早期对减水剂吸附作用越强,减弱了减水剂分子在其它水化产物表面及浆体中吸附分散作用,使水泥初始净浆流动度降低,且损失较大。此外,伍瑞斌[4]等人认为,水泥颗粒分布范围越窄,减水剂与水泥适应性越差。
水泥碱含量大小
水泥中碱含量以NaO2+0.658K2O来表征,过量碱含量会引发碱集料反应,同时也对聚羧酸减水剂和水泥适应性不利。大量试验研究发现,只有碱含量控制在0.4%~0.8%范围时,其含量对聚羧酸减水剂与水泥适应性影响程度最小。因此,在水泥生产时应严格把控碱含量,降低对聚羧酸减水剂与水泥适应性的危害。
水泥新鲜度
赵菊梅[5]、吴铭生[6]等人认为,水泥新鲜程度不同,其矿物组成中的C3A和C4AF含量大不相同,水泥越新鲜,C3A和C4AF含量相对高,聚羧酸减水剂对其适应性越差。龙肖娟[7]等人研究发现,水泥陈放必须达到一定时间,才能有效改善聚羧酸减水剂对其适应性不良的问题,但过长对其流动性改善程度却也很有限。
石膏
石膏作为水泥组成中不可缺少的材料之一,其主要作用是调节水泥的凝结时间。但众多研究发现,石膏种类、掺量及结晶形态对聚羧酸减水剂与水泥适应性有很大程度影响。尚燕[8]等人通过研究可溶性SO42-的吸附行为发现,,由于水泥颗粒和SO42-对聚羧酸减水剂分子的吸附性竞争,随石膏掺量增加,聚羧酸减水剂在水泥上的吸附量及吸附率逐渐减小,导致其与水泥的适应性减弱;无水石膏在水泥颗粒表面的吸附能力强于二水石膏,即对水泥适应性较二水石膏差;结晶形态相同而种类不同的石膏,对水泥的吸附率也大不相同,磷石膏的吸附率较大,会降低聚羧酸减水剂与水泥适应性。孙振平[9]等人研究发现,工业副产石膏制品的品质对聚羧酸减水剂与水泥适应性也有影响,当烟气脱硫石膏脱硫不充分时,石膏中存在较多亚硫酸钙,与普通脱硫石膏相比,对聚羧酸减水剂分子的吸附能力增大,吸附到水泥颗粒表面的减水剂分子相对减少,导致聚羧酸减水剂与水泥的适应性变差。
水泥温度
李一可[10]、刘传昆[11]等人研究认为,水泥温度小于70℃对水泥浆液初始流动度损失影响不明显;但随温度逐渐升高到超过80℃时,表现出聚羧酸减水剂与水泥适应性降低;当温度更高时,水泥中部分二水石膏会脱水转变为无水石膏,需水量及其对聚羧酸减水剂的吸附增大,使其与水泥适应性变差,流动度损失显著增大。
矿物掺和料
矿物掺和料因混凝土不同需求品种不在单一,研究表明矿物掺和料掺量、品质、种类、粒度不同,对聚羧酸减水剂与水泥适应性度影响大小不同。
何燕[12]等人研究认为,矿渣的适量掺入能有效提高掺有聚羧酸减水剂混凝土的初始流动性,且流动性保持性理想;粉煤灰随掺量增加会降低其流动性,且流动性损失较大。李志坤[13]等人发现,硅灰降低聚羧酸减水剂在水泥体系的有效吸附分量,减弱减水剂在混凝土中的减水分散效果,当其掺量超过6%时影响最为显著。雷西萍[14]等人通过对比五种不同粒度粉煤灰在掺有聚羧酸减水剂水泥的流动度经时损失发现,粒度越小,越有利于提高其工作性。
在线客服